Researchers have developed an algorithm to train an analog neural network just as accurately as a digital one, enabling the development of more efficient alternatives to power-hungry deep learning ...
In a Nature Communications study, researchers from China have developed an error-aware probabilistic update (EaPU) method ...
VFF-Net introduces three new methodologies: label-wise noise labelling (LWNL), cosine similarity-based contrastive loss (CSCL), and layer grouping (LG), addressing the challenges of applying a forward ...
Chinese researchers harness probabilistic updates on memristor hardware to slash AI training energy use by orders of magnitude, paving the way for ultra-efficient electronics.
Neural networks made from photonic chips can be trained using on-chip backpropagation – the most widely used approach to training neural networks, according to a new study. The findings pave the way ...
A new technical paper titled “Exploring Neuromorphic Computing Based on Spiking Neural Networks: Algorithms to Hardware” was published by researchers at Purdue University, Pennsylvania State ...
Modeled on the human brain, neural networks are one of the most common styles of machine learning. Get started with the basic design and concepts of artificial neural networks. Artificial intelligence ...